
i
i

i
i

i
i

i
i

Rendering Vector
Displacement Mapped

Surfaces in a GPU Ray Tracer
Takahiro Harada

1.1 Introduction

Ray tracing is an elegant solution to render high quality images. By com-
bining Monte Carlo integration with ray tracing, we can solve the rendering
equation. However, a disadvantage of using ray tracing is its high compu-
tational cost which makes render time long. To improve the performance,
GPUs have been used. However, GPU ray tracers typically do not have as
many features as CPU ray tracers. Vector displacement mapping is one of
the features, which we do not see much in GPU ray tracers. When vector

Figure 1.1: The ”Party” scene with vector displacement mapped surfaces
rendered using the proposed method. The rendering time is 77ms/frame
on an AMD FirePro W9100 GPU. Instancing is not used to stress the ren-
dering algorithm. If pre-tessellated, the geometry requires 52GB memory.

1



i
i

i
i

i
i

i
i

21. Rendering Vector Displacement Mapped Surfaces in a GPU Ray Tracer

Figure 1.2: The base mesh used for the ”Party” scene.

displacement mapping is evaluated on the fly (i.e., without creating a large
number of polygons in the preprocess and storing them in the memory), it
allows us to render a highly geometric detailed scene from a simple mesh.
Since geometric detail is an important factor for realism, vector displace-
ment mapping is an important technique in ray tracing. In this chapter,
we describe a method to render vector displacement mapped surfaces in a
GPU ray tracer.

1.2 Displacement Mapping

Displacement mapping is a technique to add the geometric detail to a sim-
ple geometry. Although the goal is similar to normal mapping, it actually
creates high resolution geometries as shown in Fig. 1.1 from low reso-
lution mesh (Fig. 1.2) while normal mapping only changes the normal
vector to add an illusion of having a geometric detail. There are two types
of displacement mapping. The one we usually call displacement mapping
uses textures storing scalar values, which are used as o↵sets for the dis-
placement using the surface normal as the displacement direction. We call
this approach scalar displacement mapping. The other is vector displace-
ment mapping which uses a texture storing vector values, that are used
as displacement vector of the surface. Because the displacement can be
an arbitrary direction, it gives a lot of freedom for what we create from a
simple geometry. For example, scalar displacement mapping cannot create



i
i

i
i

i
i

i
i

1.3. Ray Tracing a Scene with Vector Displacement Maps 3

Figure 1.3: Illustration of vector displacement mapping. (a) Simple geom-
etry (a quad). (b) A vector displacement map. (c) Surface after applying
vector displacement.

an overhang as shown in Fig. 1.3, but vector displacement mapping can.

This freedom in vector displacement mapping poses technical challenges
when it is ray traced. Although we could use algorithms, such as the
method proposed by [Smits et al. 00], for ray tracing a scalar displacement
mapped surface by utilizing the constraint in the displacement direction, we
cannot apply it for a vector displacement mapped surface as the assumption
does not apply. In vector displacement mapping, there is no constraint in
displacement direction. So when we check the intersection of a ray with
a vector displacement patch (VD patch), we cannot avoid creating the
detailed geometry by tessellating and displacing vertices and building a
spatial acceleration structure for those.

1.3 Ray Tracing a Scene with Vector Displacement
Maps

Ray tracing requires identifying a closest hit point for a ray with the scene
which is accelerated by using a spatial acceleration structure. Bounding
volume hierarchies (BVHs) as acceleration structure are often employed.
When we implement a ray tracer only for simple primitives such as triangles
and quads, we compute the intersection to a primitive once we encounter
it during BVH traversal. However, an intersection to a VD patch is much
more expensive to compute than an intersection test with these simple
primitives, especially when direct ray tracing is used (i.e., a VD patch is
tessellated and displaced on the fly). To amortize the cost of tessellation
and displacement, we want to gather all the rays intersecting to the AABB
of a VD patch and process them at once rather than subdividing and
displacing a VD patch every time a ray hits to its AABB as studied by
[Hanika et al. 10].



i
i

i
i

i
i

i
i

41. Rendering Vector Displacement Mapped Surfaces in a GPU Ray Tracer

8"7"6"5"

1"

12"11"10"9"

2"

16"15"14"13"

3"

20"19"18"17"

4"

0"Level%0%

Level%1%

Level%2%

Max.x" Max.y"
Max.z" Min.x"
Min.y" Min.z"

Normal"
UV"

4Byte%

Figure 1.4: Quad BVH. Each node stores two links; one pointing to the
first children (red), and one pointing to the skip node (green). To check if
a node is a leaf of leveli the node index is compared to (4i � 1)/3 e.g., leaf
nodes of level 2 BVH are nodes whose index is greater than 5. Data layout
in a node is shown on the left.

1.4 Ray Tracing a Vector Displacement Patch

This section focuses on the ray-VD patch intersection although using it in
a ray tracer requires additional changes which are going to be discussed in
Sec. 1.5. In this section, we first describe a single threaded implementation
of the intersection of a ray with a VD patch to simplify the explanation.
We then extend it for a parallel implementation using OpenCL.

1.4.1 Single Ray

To intersect a ray with a VD patch, we first need to build the detailed
geometry of the patch by tessellating it to generate vertices which are
then displaced by the value fetched from the vector displacement map.
Although there are several ways to generate vertices, we simply generate
them uniformly on the patch (i.e., all the generated vertices are on the
plane of the patch) without geometry smoothing.

Data Structure We could find the closest intersection by testing primitives
in the scene one-by-one but it is better to create a spatial acceleration struc-
ture to do this e�ciently. As we build it on the fly, the build performance
is as important as the intersection performance. Therefore, we employed a
simple acceleration structure. A patch is split into four patches recursively
to build a complete quad BVH. At the lowest level of the BVH, four vertex
positions and texture coordinates are linearly interpolated from the val-
ues of the root patch. The displaced vertex position is then calculated by
adding the displacement vector value which is fetched from a texture using
the interpolated texture coordinate. Next, the AABBs enclosing these four
vertices are then computed and they are used as the geometry at the leaves
instead of using a quad because we subdivide the patch smaller than a



i
i

i
i

i
i

i
i

1.4. Ray Tracing a Vector Displacement Patch 5

pixel size. This allows us not to store geometries (e.g., vertices), but only
store the BVH. Thus we can reduce the data size for a VD patch. A tex-
ture coordinate and normal vector are also computed and stored within a
node. Once leaf nodes are computed, it ascends the tree level-by-level and
builds the nodes of the inner level. It does this by computing the union of
AABBs and averaging normal vectors and texture coordinates of the four
child nodes. This process is repeated until it reaches the root node.

For better performance, the memory footprint for the BVH has to be
reduced as much as possible. Thus an AABB is compressed by quantizing
the maximum and minimum values into 2 byte integers (max

q

,min

q

) these
as follows.

max

q

= 0xfff7⇥ (max

f

�min

root

)/extent
root

+ 1 (1.1)

min

q

= 0xfff7⇥ (min

f

�min

root

)/extent
root

(1.2)

extent

root

= max

root

�min

root

(1.3)

where max

f

,min

f

are uncompressed maximum and minimum values of
the AABB and max

root

,min

root

are values of the root AABB. We con-
sidered compressing them into 1 byte integers but the accuracy was not
high enough since the subdivision level can easily go higher than the res-
olution limit of 1 byte integers (i.e., 8 levels). We also quantized texture
coordinates and the normal vectors into 4 bytes each. Therefore, the total
memory footprint for a node is 20 Bytes (Fig. 1.4).

We separate the hierarchy of the BVH from the node data (i.e., a node
does not store links to other nodes such as children). This is to keep
the memory footprint for nodes small. We only store one hierarchy data
structure for all VD patches because we always create a complete quad
BVH so that the hierarchy structure is the same for all the BVHs we
construct. Although we build a BVH at di↵erent depths (i.e., levels), we
only compute and store the hierarchy structure for the maximum level we
might build. As nodes are stored in breadth first order, leaf nodes can be
identified easily by checking their index. Leaf nodes at ith level are nodes
with indices larger than (4i � 1)/3 as shown in Fig. 1.4.

We use stackless traversal for BVH traversal. Thus, a node in the
hierarchy structure stores two indices of the first child and the skip node
(Fig. 1.4). These two indices are packed and stored in a 4 bytes of data.

To summarize the data structure we have:

• DPrecomputed data for the hierarchy structure.

• BVH (array of nodes) built on the fly.

In Listing 1.1, they are denoted as gNodes and gLinks, respectively.



i
i

i
i

i
i

i
i

61. Rendering Vector Displacement Mapped Surfaces in a GPU Ray Tracer

g l o b a l Node⇤ gNodes ;
g l o b a l u32⇤ gLinks ;

f loat f ;
u32 n , uv ;
int o = ge tO f f s e t ( lodRes ) ;
while ( nodeIdx != breakIdx )
{

Aabb node = NodeGetAabb( gNodes [ nodeIdx ] ) ; // recons t ruc t AABB

f loat f r a c = AabbIntersect ( node , &from , &to , &invRay ) ;
bool i s L e a f = nodeIdx >= o ;
i f ( f r a c < f )
{

i f ( i s L e a f )
{

f = f r a c ;
n = gNodes [ nodeIdx ] . m n ;
uv = gNodes [ nodeIdx ] . m uv ;
nodeIdx = LinkGetSkip ( gLinks [ nodeIdx ] ) ;

}
else

nodeIdx = LinkGetChild ( gLinks [ nodeIdx ] ) ;
}
else

nodeIdx = LinkGetSkip ( gLinks [ nodeIdx ] ) ;
}

Listing 1.1: Bottom-level hierarchy traversal.

Traversal and Intersection The primary reason we employed a stackless
traversal is to reduce the memory tra�c and register pressure which af-
fects the performance. Moreover, since the data for the state of the ray is
the index of the current node, we could easily shu✏e rays to improve the
performance although we have not investigated this optimization yet.

As we have already built the BVH for the patch, the traversal is straight-
forward. Pseudo code is shown in Listing 1.1.

1.4.2 OpenCL Implementation

To fully utilize the GPU, we have to parallelize the algorithm described
in the previous subsection. We implemented our algorithm using OpenCL
and used AMD GPUs and thus follow the respective terminologies in the
following explanation.

Before we start intersecting rays with VD patches, we gather all the
rays hitting the AABB of any VD patches. When a ray hits multiple VD
patches, we store multiple hits. These hits are sorted by a VD patch index.
This results in a list of VD patches, each of which has a list of rays.

We implemented a kernel doing both BVH build and its traversal. Work



i
i

i
i

i
i

i
i

1.4. Ray Tracing a Vector Displacement Patch 7

Ray$hit$distances$

Atomic$Op.$

Atomic$Op.$

1.$A$work$group$executed$(16$work$items)$

2.$LOD$computa@on$(for$each$ray)$

3.$BVH$build$(for$each$node)$

4.$Ray$cast$(for$each$ray)$

Ray$Ray$Ray$Ray$

VD$patch$

Ray$ Ray$

Mesh$

VD$texture$

Work$buffer$

t$ t$ t$ t$ t$ t$

.$.$.$

.$.$.$

Figure 1.5: Overview of the algorithm. In this illustration, the VD patch
has 24 rays intersecting the root AABB, it builds a BVH with depth 3.

groups are launched with the number of work items optimal for the respec-
tive GPU architecture. We use AMD GPUs which are 64 wide SIMD so
64 work items are executed for a work group. A work group first fetches
a VD patch from the list of unprocessed VD patches. This work group is
responsible for the intersection of all rays hitting the AABBs of the root
patch. First, we use work items executing in parallel for building the BVH.
However, as we build a BVH for the patch which has to be stored some-
where, we need to allocate memory for that and therefore the question is
where to allocate. The first candidate is in the local data share (LDS), but
it is too small if we build a BVH with 6 levels (64⇥ 64 leaf nodes), which
requires 108KB (=5400 nodes x 20B). If we limit the number of levels to 5
(32⇥32 leaf nodes), we only require 26KB. Although this is smaller than the
maximum allocation size for the LDS (32KB) for an AMD FirePro W9100
GPU, we can only schedule 2 work groups per compute unit (A compute
unit has 4 SIMD engines (SIMD)). Thus it cannot schedule enough work



i
i

i
i

i
i

i
i

81. Rendering Vector Displacement Mapped Surfaces in a GPU Ray Tracer

groups for a SIMD to hide latencies which results in poor performance.
Instead of storing it in the LDS, we store it in the global memory whose
access latency is higher than the LDS, but we do not have such a restriction
in the size for the global memory. Since we do not use the LDS for the
storage of the BVH data in this approach, the LDS usage is not the limiting
factor for concurrent work group execution in a SIMD. The limiting factor
is now the usage of vector general purpose registers (VGPRs). Our current
implementation allows us to schedule 12 work groups in a compute unit
(CU), which is 3 per SIMD as the kernel uses 72 VGPRs per SIMD lane.

Since we know the maximum number of work groups executed concur-
rently in a CU for this kernel, we can calculate the number of work groups
executed in parallel on the GPU. We used an AMD FirePro W9100 GPU,
which has 44 CUs. Thus, 528 work groups (44 CUs x 12 work groups) are
launched for the kernel. A work group processes VD patches one after an-
other, and executes until no VD patch is left unprocessed. As we know the
number of work groups executed, we allocate memory for the BVH storage
in global memory before execution and assign each chunk of memory for a
work group as a work bu↵er. In all the test cases, we limit the maximum
subdivision level to 5, and thus a 13 MB (= 26KB x 528) work bu↵er is
allocated.

After work groups are launched and a VD patch is fetched, we first com-
pute the required subdivision level for the patch by comparing the extent
of the AABB of the root node to the area of a pixel at the distance from the
camera. As we allow instancing for shapes with vector displacement maps
(e.g., the same patch can be at multiple locations in the world), we need
to compute the subdivision level for all the rays. Work items are used to
process rays in parallel at this step. Once a subdivision level is computed
for a ray, the maximum value is selected using an atomic operation to an
LDS value.

Then, work items compute the node data, which is the AABB, texture
coordinate, and normal vector of a leaf in parallel. If the number of leaf
nodes is higher than the number of work items executed, a work item
processes multiple nodes sequentially. Once the leaf level of the BVH is
built, it ascends the hierarchy one step and computes nodes at the next
level of the hierarchy. Work items are used to compute a node in parallel.
Since we write node data to global memory at one level, and then read it
at the next level, we need to guarantee that the write and read order is
kept. This is enforced by placing a global memory barrier which guarantees
the order in a work group only, thus it can be used for this purpose. This
process is repeated until it reaches the root of the hierarchy. Pseudo code
for the parallel BVH build is shown in Listing 1.2.

Once the hierarchy is built, we switch the work item usage from a work
item for a node to a work item for a ray. A work item reads a ray from the



i
i

i
i

i
i

i
i

1.4. Ray Tracing a Vector Displacement Patch 9

list of rays hitting the AABB of the VD patch. A ray is then transformed to
the object space of the model and traversed using the hierarchy information.
If the current hit is closer than the last found hit, the hit distance, element
index, normal vector, and texture coordinate at the hit point are updated.
However, we cannot simply write this hit information because a ray can be
processed by more than one work item in di↵erent work group. The current
OpenCL programming model does not have a mechanism to have a critical
section, which would be necessary for our case1. Instead, we used 64 bit
atomic operations which are not optimal in terms of performance, but at
least we can avoid the write hazard. When the element index, quantized
normal vector, and quantized texture coordinate are all 32 bit data, the hit
distance is converted into a 32 bit integer and appended at the top 32 bit
to create 64 bit integers. By using an atomic min operation, we can store
the closest hit information (Listing 1.1).

Pseudo code for the entire kernel is shown in Alg. 1.

while Unprocessed VD patch do

{Max LOD level computation}
for rays in parallel do
level computeLODLevel(ray

i

)
maxLevel max(level)

end for

{Build BVH}
for leaves in parallel do
computeLeafNode(leaf

i

)
end for

for lv = maxLevel � 1, lv > 0 do

for nodes at level lv in parallel do
computeNode(node

i

)
end for

end for

{BVH traversal and Ray VD patch intersection}
for rays in parallel do
level computeLODLevel(ray

i

)
hit rayCast(level)
storeHit(ray

i

, hit)
end for

end while

Algorithm 1: Bottom-level hierarchy build and traversal kernel

1Note that barrier (CLK GLOBAL MEM FENCE) only guarantee synchronization
of global memory access from a work group but not for di↵erent work groups.



i
i

i
i

i
i

i
i

101. Rendering Vector Displacement Mapped Surfaces in a GPU Ray Tracer

1" 2"

0"

4"3" 5" 6"

Top,level"BVH"

Middle,level"BVH"

Mesh0&
xform0&

Mesh1&
xform1&

Mesh1&
xform2&

Mesh2&
xform3&

VD&VD&

Bo6om,level"BVH"

VD&

Figure 1.6: Three-level hierarchy. A leaf of the top-level BVH stores an
object, which is a middle-level BVH and transform. A leaf of the middle-
level BVH stores primitives such as a triangle, a quad, and a VD patch.
There is a bottom-level BVH which is built on the fly during the rendering
for a leaf storing a VD patch.

1.5 Integration into an OpenCL Ray Tracer

Although ray tracing one mesh with a vector displacement map is sim-
ple, we want to use several meshes with vector vector displacement maps,
together with other triangle meshes as shown in Fig. 1.1. This section
describes how the ray tracing of a VD patch is integrated into our OpenCL
ray tracer.

1.5.1 Scene Description

We could store all the primitives in the scene in a single spatial accelera-
tion structure. However, this does not allow us using techniques such as
instancing, which is a powerful method to increase the scene complexity
with small overhead. Therefore, we put meshes in the scene and build an
acceleration structure storing meshes at leafs. A mesh is a triangle mesh,
a quad mesh (some of which might be VD patches), or an instance of one
of those with a world transformation. We then build another hierarchy
for each mesh in which primitives (e.g., triangles, quads) are stored at leaf



i
i

i
i

i
i

i
i

1.5. Integration into an OpenCL Ray Tracer 11

Table 1.1: Memory usage for geometry and acceleration structure.

Scene Pre tessellation Direct ray tracing
”Party” 52GB 16MB
”Bark” 1.7GB 0.47MB
”Barks” 12GB 3.3MB
”Pumpkin” 380MB 0.12MB

nodes. If a primitive is a VD patch, we build another hierarchy in a patch
as we discussed in Sec. 1.4. Therefore, we have a three-level hierarchy. The
top and middle stores meshes and primitives and the bottom exists only
for a VD patch, which is generated on the fly.

1.5.2 Preparation

Before rendering starts, we build top and middle-level BVHs which re-
quire the computation of AABBs for primitives. In case for VD patches,
the computation of an accurate AABB is expensive as it requires tessella-
tion and displacement. Instead, we compute the maximum displacement
amount from a displacement texture and expand the AABB of a quad us-
ing the value. Although this results in a loose-fitted AABB, which makes
ray tracing less e�cient than when tight AABBs are computed, it makes
the preparation time short.

1.5.3 Hierarchy Traversal

We fused the traversal of top and middle-level hierarchy into a traversal
kernel. When a ray reaches a leaf of the top-level hierarchy, the ray is
transformed into object space and starts traversing the middle-level hierar-
chy. Upon exiting the middle-level hierarchy, the ray is transformed back
to world space. Once a ray hits a leaf node of the middle-level hierarchy,
it computes a hit the primitive stored at the leaf node immediately if the
primitive is a triangle or a quad. As discussed in Sec. 1.4, we do not com-
pute the intersection of a ray with the VD patch on a visit to a leaf node.
Instead, a primitive index and ray index is stored in a bu↵er for further
processing (i.e., precisely, we also store the mesh index which is necessary
to get its transform). An atomic operation is used to allocate space for a
pair in the bu↵er. After the top and middle-level hierarchy traversal, the
computed hits are only those computed with triangles and quads. Thus we
need to determine if there are closer intersections with VD patches.

The primitive index and ray index are stored in random order. As we



i
i

i
i

i
i

i
i

121. Rendering Vector Displacement Mapped Surfaces in a GPU Ray Tracer

0" 5" 10" 15" 20" 25" 30" 35" 40"

Bark[VD]"

Bark"

Barks[VD]"

Barks"

Pumpkin[VD]"

Pumpkin"

Time%(ms)%

Setup"ray"
Ray"cast"
Sampling"
Ray"cast"
Accumula@on"

Figure 1.7: Breakdown of computational time for a frame. There are two
graphs for each scene. One is with pre-tessellation and the other (VD) is
with the proposed method. Barks cannot render without using instancing
with VD patches.

process patch-by-patch, these values are sorted by primitive index using a
radix sort [Harada and Howes 11], and the start and end indices of pairs
for a primitive are computed. The bu↵er storing the start indices is used
as a job queue.

We then execute a kernel described in Sec. 1.4 which computes the
intersection with VD patches. The minimum number of work groups filling
the GPU is executed and each work group fetches an unprocessed VD patch
from the queue, and then processes one after another.

1.6 Results and Discussion

We created models with vector displacement maps in Mudbox for evaluat-
ing the method. Base meshes and vector displacement maps are exported
in object space. We created four test scenes with these models and mod-
els without vector displacement maps (Figs. 1.1 and 1.8). To stress the
renderer, we intentionally did not use instancing for these tests, although
we could use it to improve the performance for a scene in which a same
geometry has been placed several times. We used an AMD FirePro W9100
GPU for all the tests.

The biggest advantage of using vector displacement maps is its small
memory footprint, as it creates highly detailed geometry on the fly rather
than preparing a high-resolution mesh. The memory usages with the



i
i

i
i

i
i

i
i

1.6. Results and Discussion 13

(a) ”Bark” (b) ”Bark” (Base mesh)

(c) ”Barks” (d) ”Barks” (Base mesh)

(e) ”Pumpkin” (f) ”Pumpkin” (Base mesh)

Figure 1.8: Some of our test scenes with and without vector displacement
maping.

proposed method and with pre-tessellation are shown in Table 1.1. The
”Party” scene requires most memory and does not fit into any existing
GPU’s memory with pre-tessellation. Even if we could store such a large
scene in memory, it takes time to start the rendering because of the pre-
process for rendering, such as IO and spatial acceleration structure build.
This prevents a fast iteration of modeling and rendering. On the other
hand, those overheads are low when direct ray tracing of vector displace-
ment maps is used. The di↵erence is noticeable, even for the ”Pumpkin”
scene.



i
i

i
i

i
i

i
i

141. Rendering Vector Displacement Mapped Surfaces in a GPU Ray Tracer

0" 5" 10" 15" 20" 25" 30" 35" 40"

Bark"(Primary)"
Bark"(Shadow)"
Barks"(Primary)"
Barks"(Shadow)"

Pumpkin"(Primary)"
Pumpkin"(Shadow)"

Party"(Primary)"
Party"(Shadow)"

Time%(ms)%

Top"middle"ray"cast"
Sort"
Bo@om"ray"cast"

Figure 1.9: Time for top, middle ray cast, sort, and bottom ray cast.

The advantage of the memory footprint is obvious, but the question is
”What is the cost at runtime, (i.e., the impact for the rendering speed)?”.
Despite its complexity in the ray casting algorithm, direct ray tracing of
vector displacement maps was faster for most of the experiments. We
rendered direct illumination of the scene under an environment light (i.e.,
1 primary ray cast and 1 shadow ray cast) and measured the breakdown of
the rendering time which is shown in Fig. 1.7 2. Pre-tessellation is faster
only for the ”Pumpkin” scene whose geometric complexity is the lowest
among all tests. Pre-tessellation is slower for the ”Bark” scene and it fails
to render the other two larger scenes. This is interesting as direct ray
tracing is doing more work than pre-tessellation. This performance came
from less divergent computation of direct ray tracing (i.e.,the top, middle-
level hierarchy is relatively shallow, and we batch the rays intersecting with
a VD patch).

To understand the ray casting performance for direct ray tracing better,
we analyzed the breakdown of each ray cast operation for the scenes (Fig.
1.9). These timings include kernel launch overhead which is substantial
especially for sorting which requires launching many kernels. Computation
time for sorting is roughly proportional to the number of hit pairs although
it includes the overhead. Most of the time is spent on bottom-level BVH
build and ray casting for VD patches. The time does not change much when
we compare primary and shadow ray casts for the ”Barks” scene, although
the number of shadow rays is smaller than the number of primary rays. This
indicates the weakness of the method, which is that the bottom-level BVH
construction cost can be amortized when there are a large number of rays
intersecting with a VD patch, but it cannot be amortized if this number

2The renderer is a progressive path tracer thus all screenshots are taken after it casts
some samples per pixel.



i
i

i
i

i
i

i
i

1.6. Results and Discussion 15

0"

2"

4"

6"

8"

10"

1st" 1st"(sh)" 2nd" 2nd"(sh)" 3rd" 3rd"(sh)" 4th" 4th"(sh)" 5th" 5th"(sh)"

Ti
m
e%
(m

s)
%

Ray%depth%

Figure 1.10: Ray casting time for each ray depth in indirect illumination
computation. (sh) are ray casts for shadow rays.

Figure 1.11: The ”bark” scene rendered with 5 bounce indirect illumina-
tion.

is too low. This is why the ray casting for shadow rays in the ”Pumpkin”
scene is so slow compared to the time with pre-tessellation. The situation
gets worse as the ray depth increases. We rendered indirect illumination
with 5 ray bounces (depths) for the ”Bark” scene and measured the ray
casting time (Fig. 1.10). Although the number of active rays decreases as
it goes deeper, the ray casting time did not decrease much. This can be
improved by caching the generated bottom-level BVH, which is disposed
and computed again for each ray casting operation. This is an opportunity



i
i

i
i

i
i

i
i

16 BIBLIOGRAPHY

for future research.

1.7 Conclusion

In this chapter, we have presented a method to ray trace vector displace-
ment mapped surfaces on the GPU. Our experiments show that direct ray
tracing requires a small memory footprint only, and ray tracing perfor-
mance is competitive or faster than ray tracing with pre-tessellation. The
advantage gets stronger as there are more VD patches in the scene.

From the breakdown of the rendering time, we think that optimizing
the BVH build for the scene and ray casting for simple geometries such as
triangles and quads are not as important as optimizing the bottom-level
hierarchy build and ray casting because the complexity of the bottom-level
hierarchy easily becomes higher than the complexity of the top and middle-
level hierarchy once we start adding vector displacement to the scene.

Bibliography

[Hanika et al. 10] Johannes Hanika, Alexander Keller, and Hendrik P. A.
Lensch. “Two-level Ray Tracing with Reordering for Highly Complex
Scenes.” In Proceedings of Graphics Interface, GI ’10, pp. 145–152,
2010.

[Harada and Howes 11] T. Harada and L. Howes. “Introduction to GPU
Radix Sort.” In Heterogeneous Computing with OpenCL, 2011.

[Smits et al. 00] Brian E. Smits, Peter Shirley, and Michael M. Stark. “Di-
rect Ray Tracing of Displacement Mapped Triangles.” In Proceedings
of the Eurographics Workshop on Rendering Techniques, pp. 307–318,
2000.



i
i

i
i

i
i

i
i

BIBLIOGRAPHY 17

int l o c a l I d x = GET LOCAL IDX;
int l I dx = l o c a l I d x %8;// Assuming 64 work items in a work group

int l I dy = l o c a l I d x /8 ;
// Compute l e a f nodes

for ( int j j=l Idy ⇤nn ; j j <( l I dy+1)⇤nn ; j j++)
for ( int i i=l Idx ⇤nn ; i i <( l I dx+1)⇤nn ; i i ++)
{

Aabb aabb ;
for ( int j =0; j <2; j++) for ( int i =0; i <2; i++)
{

f l o a t 2 w = make f loat2 ( ( i i+i )/ ( f loat ) nSp l i t , ( j j+j )/ ( f loat ) nSp l i t ) ;
f l o a t 2 uv = inte rpo la teUv ( uv0 , uv1 , uv2 , uv3 , w ) ;
f l o a t 4 v = in t e rpo l a t eVe r t ex ( v0 , v1 , v2 , v3 , w ) ;
v += t e x t u r e f e t c h ( gVDispMap [ f a ce Idx ] , uv ) ; // Apply d isp lacement

AabbIncludePoint ( &aabb , v ) ;
}
int o = ge tO f f s e t ( t e s sL ev e l ) ;

g l o b a l Gr idCel l ⇤ dst = &myCells [ o + i i + j j ⇤ nSp l i t ] ;
dst�>m aabb = quantizeAabb ( aabb ) ;
dst�>m n = compressF4 ( computeNormal ( i i , j j ) ) ;
dst�>m uv = compress ( computeUv ( i i , j j ) ) ;

}
GLOBAL BARRIER;
// Computes i n t e r na l nodes l e v e l by l e v e l

for ( int l e v e l = te s sLeve l �1; l e v e l >=0; l e v e l ��)
{

int nc = (1<< l e v e l ) ;
int nf = (1<<( l e v e l +1)) ;
int oc = ge tO f f s e t ( l e v e l ) ;
int o f = ge tO f f s e t ( l e v e l+1 ) ;
while ( l o c a l I d x < nc⇤nc )
{

int i i = l o c a l I d x%nc ;
int j j = l o c a l I d x /nc ;

Gr idCel l g = myCells [ o f + (2⇤ i i )+(2⇤ j j )⇤ nf ] ;
Gr idCel l g1 = myCells [ o f + (2⇤ i i +1)+(2⇤ j j +1)⇤nf ] ;
Gr idCel l g2 = myCells [ o f + (2⇤ i i +1)+(2⇤ j j )⇤ nf ] ;
Gr idCel l g3 = myCells [ o f + (2⇤ i i )+(2⇤ j j +1)⇤nf ] ;
myCells [ oc + i i + j j ⇤nc ] = merge ( g , g1 , g2 , g3 ) ;
l o c a l I d x += WG SIZE⇤WG SIZE ;

}
GLOBAL BARRIER;

}

Listing 1.2: BVH build starting with the leaf level build and then the upper
level build.



i
i

i
i

i
i

i
i


