
4

V

Semi-static Load Balancing for
Low Latency Ray Tracing on

Heterogeneous Multiple GPUs
Takahiro Harada

4.1 Introduction

Ray tracing is used to render a realistic image but the drawback is its high
computational cost. Although there are studies accelerating ray tracing using the
GPU, even with the latest GPU, we cannot get a satisfactory rendering speed.
An obvious way to accelerate it further is to use more than one GPU. To exploit
the computational power of multiple GPUs, the work has to be distributed in
a way so that it minimizes the idle time of GPUs. There are studies on load
balancing CPUs, but they are not directly applicable to multiple GPUs because
of the difference of the architectures, as discussed in Section 4.2.

If we could restrict the target platform as GPUs with the same compute
capability, the problem is simpler. However, there are more and more PCs with
multiple GPUs with different compute capabilities (e.g., a PC with an integrated
GPU on a CPU and a discrete GPU). Also, when we build a PC with multiple
discrete GPUs, it is easier to get different-generation GPUs than GPUs with the
same specification, or the same compute capability. Therefore, if we develop a
ray tracing system that works well on multiple GPUs with nonuniform compute
capabilities, there are more PCs that benefit from the method comparing to a
ray tracing system developed only for GPUs with a uniform compute capability.

If we restrict ourselves to a system with multiple GPUs of the same specifica-
tion, we could use alternate frame rendering [Advanced Micro Devices, Inc. 16].
However, an issue of the method is latency; it does not improve the latency to
render a single frame. There are many applications that prefer a low-latency
rendering. They include games and other interactive applications. Also, the rise
of the head-mounted display is another strong push of a low-latency rendering.

177

178 V 3D Engine Design

(a) Rendered scene. (b) Visualization of samples.

0

500

1000

1500

2000

2500

3000

3500

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

N
um

be
r o

f S
am

pl
es

Frames

(c) Sample distribution.

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

1 101 201 301

Ti
m

e (
m

s)

Frames

GPU (W9000) GPU (W9100)
Error

M
ax

 E
rr

or
 (%

)

(d) Computational time and error.

Figure 4.1. (a) Ray traced scene on AMD FirePro W9000 and W9100 GPUs. (b) Visualization of the
number of samples per pixel (black = 1, white = 5). The depth buffer of the scene is first rendered
using OpenGL. Then, an edge detection algorithm computes this image, which is an input for a primary
ray generation kernel generating more samples at pixels containing geometry edges. (c) Histogram of the
number of samples of (b) for each vertical scanline. (d) Computational time on two GPUs and maximum
deviation of computational time under a camera motion. Average error is 1.2%.

The goal of this chapter is to develop a low-latency ray tracing system for
multiple GPUs with nonuniform compute powers. To realize this goal, we propose
a semi-static load balancing method that uses rendering statistics of the previous
frame to compute work distribution for the next frame. The proposed method
does not assume uniform sampling density on the framebuffer, thus it is applicable
for a problem with an irregular sampling pattern as shown in Figure 4.1. The
method is not only applicable for the multi-GPU environment, but it can be used
to distribute compute work load on GPUs and a CPU as we show in Section 4.4.

4.2 Load Balancing Methods

4.2.1 Frame Distribution

Frame distribution, also known as alternate frame rendering, is often used to
utilize multiple GPUs for a raster graphics for interactive application [Advanced

4. Semi-static Load Balancing for Low Latency Ray Tracing on Heterogeneous Multiple GPUs 179

Micro Devices, Inc. 16]. Although it performs well when all the GPUs in a system
have the same compute capability, it results in underutilization of GPUs unless
we use the same GPUs. When n GPUs are used, a GPU should spend n × t
for computation of a single frame to have zero idle time where t is the time to
display a single frame. Therefore, the latency of interaction is high; it takes time
to propagate a user input to all the GPUs. Thus, alternate frame rendering is
not suited for many GPUs with different compute capabilities.

4.2.2 Work Distribution

Data distribution, also known as sort last rendering, splits input geometry into
small chunks each of which is processed on a node (when GPUs are used, a
node is a GPU). Although it reduces the rendering time for each GPU, it is not
straightforward to use for global illumination in which rays bounce. Moreover,
the computation time is view dependent, thus it is difficult to get a uniform
computation time for all the nodes. It also requires transferring screen-sized
images with depth, which results in large network traffic. Therefore, it is not
suited for rendering running at an interactive speed.

Pixel distribution, also known as sort first rendering, splits the screen into
cells, and rendering a cell is distributed on nodes as work. If the works are
distributed proportional to the compute capability of the nodes, all the nodes
remain active and therefore we maximize the computation power of all nodes.
This is often the choice to distribute work on multiple CPUs [Heirich and Arvo 98].
We also employ pixel distribution for work distribution, although the preferable
work size is different for GPUs than for CPUs.

4.2.3 Work Size

CPUs prefer small work size for pixel distribution because it allows the system to
adjust the workload on each node, which results in a uniform computation time
on all nodes. However, when GPUs are used for computation, we also need to
take the architectural difference into consideration. A GPU prefers a large or wide
computation because of its architecture optimized for very wide computation. If a
work size is small, it cannot fill the entire GPU, which results in underutilization
of the GPU. Thus, we want to make the work as large as possible when GPUs
are used as compute nodes. However, load balancing becomes more difficult if we
make the work size larger and the number of works smaller, as it easily causes
starvation of a GPU. The optimal strategy for our case is to generate m works
for m GPUs and to adjust the work size so that computation times on GPUs are
exactly the same. This is challenging for ray tracing in which the computation
time for a pixel is not uniform. We realize this by collecting GPU performance
statistics and adjust the work size for each GPU over the frames.

Cosenza et al. studied a load balancing method utilizing frame coherency,
but they assume the same compute capability for processors [Cosenza et al. 08].

180 V 3D Engine Design

The method only splits or merges a work, thus it cannot perform precise load
balancing unless using small leaves. Therefore, it is not well suited as a load
balancing strategy for multiple compute devices. Another similar work to ours is
work by Moloney et al., who studied load balancing on multiple GPUs for volume
rendering [Moloney et al. 07]. However, they assume uniform compute capabilities
and uniform distribution of samples. They also assume that the computational
cost for each ray can be estimated. As none of those applies to ray tracing, their
method cannot be used for our purpose.

4.3 Semi-static Load Balancing

A frame rendering starts with a master thread splitting the framebuffer into m
areas using the algorithm described below, where m is the number of GPUs.
Once the framebuffer assignment is sent to slaves, parallel rendering starts. Each
GPU executes the following steps:

1. Generate samples (primary rays) for the assigned area.

2. Ray trace at sample location to compute radiance.

3. Send the framebuffer and work statistics to the master.

Note that master-slave communication is done only twice (send jobs, receive
results) in a frame computation.

At the first frame, we do not have any knowledge about workload nor com-
pute capabilities of the GPUs. Thus, an even split is used for the frame. After
rendering frame t, compute device i reports the area of processed framebuffer sti,
the number of samples processed nt

i, and the computation time for the work tti.
That information is used to compute the optimal framebuffer split for frame t+1.

The algorithm first estimates processing speed pti = nt
i/t

t
i (number of pro-

cessed samples per second) for each compute device. Then, it computes the ideal
time T = N t/

∑
pti to finish the work with the perfect load balancing, where

N t =
∑

nt
i is the total number of samples processed at t. With these values, we

can estimate the number of samples we need to assign for compute device i at
frame t + 1 as n′t+1

i = Tpti.
If the sample distribution is uniform on the screen, we could assign area

s′t+1
i = Sn′t+1

i /N for compute device i, where S =
∑

sti. However, as we do not
assume the uniform distribution over the frame, we need to compute the area of
the framebuffer that contains n′t+1

i samples for compute device i. The procedure
to compute area st+1

i is illustrated in Figure 4.2 in which we assume that there
are four GPUs. GPU i processed the assigned area sti at frame t and reported
that there are nt

i samples in the area (Figure 4.2(a)). A histogram of sample
distribution at frame t is built from these values (Figure 4.2(b)). Samples nt

i are
stacked up, as shown in Figure 4.2(c), to draw lines as shown in Figure 4.2(d).

4. Semi-static Load Balancing for Low Latency Ray Tracing on Heterogeneous Multiple GPUs 181

nt
3

nt
2

nt
1

nt
0

of

 S
am

pl
es

GPU0
nt

0

GPU1
nt

1

GPU2
nt

2

GPU3
nt

3

st
0 st

1 st
2 st

3

nt
1

nt
0

nt
2

nt
3

(d)
Area

of

 S
am

pl
es

(a)

nt
0

nt
1

nt
2 nt

3

st
0 st

1 st
2 st

3
(b)

Area

nt
0 nt

0 nt
0 nt

0

nt
1 nt

1 nt
1

nt
2 nt

2

nt
3

st
0 st

1 st
2 st

3
(c)

GPU3
ń t+1

3
GPU2
ń t+1

2

GPU1
ń t+1

1
GPU0
nt

0

ń t+1
3

ń t+1
2

ń t+1
1

ń t+1
0

st+1
0 st+1

1 st+1
2 st+1

3
(e)

(f)

Figure 4.2. Illustration of computation steps for sample distribution at frame t+ 1 (f)
using the information reported at frame t (a).

These lines are built to look up the number of samples at a given area. For
example, we can find that there are nt

0 samples at st0, and nt
0 + nt

1 samples at
st0 + st1. When building the lines, we ignored the distribution of samples in sti
and assumed the uniform distribution. After building them, we search for st+1

i

corresponding to n′t+1
i by the binary search.

Since we linearize the sample distribution at area processed at each GPU,
there is no guarantee that the computed work distribution is perfect. Therefore,

182 V 3D Engine Design

we gradually move the distribution to the computed distribution by interpolating
the split of t and t+1 as n′′t+1

i = (1−α)nt
i+αn′t+1

i , where α is the only parameter
for the proposed method. We set α = 0.4 for computation of Figures 4.1 and 4.3
and α = 0.2 for Figure 4.4, which has a higher variation in the sample density.

4.4 Results and Discussion

The proposed method is implemented in a OpenCL ray tracer. Experiments are
performed using three combinations of compute devices: AMD FirePro W9000
GPU + AMD FirePro W9100 GPU, Intel Core i7-2760QM CPU + AMD Radeon
HD 6760m GPU, and four AMD FirePro W9000 GPUs. The framebuffer is split
vertically for all the test cases. The method can be used with rendering pipelines
with any sampling strategies, but here we show example usages of it with two
rendering pipelines.

The first test rendering pipeline is similar to [Mitchell 87] but implemented
as a hybrid of rasterization and ray tracing. It first fills the depth buffer using
OpenGL, and it is used to compute a sample density map, as shown in Figure
4.1(b). The primary ray generation kernel for ray tracing reads the map and
decides the number of samples per pixel. In our test case, we generate five samples
for a pixel containing edges of geometry to reduce geometric aliasing, and one
for the other pixels. Ambient occlusion is progressively calculated at 1280× 720
resolution with two shadow rays per sample per frame. This is a challenging case
for the proposed method because it has high variation in the number of samples
in the direction of the split axis, as shown in Figure 4.1(b). We interactively
control the camera for all the test cases to evaluate the robustness of the method
for a dynamic environment. Sample distribution changes as the camera moves.
This is the reason why the computational times and work distribution reported in
Figures 4.1 and 4.3 have ups and downs. We can see that the method successfully
keeps the computational time on different compute devices almost the same.
Figures 4.3(d) and (e) show that the analysis of the work load distribution on the
framebuffer is good. The same number of pixels would have been assigned for
GPUs if we ignored the sample distribution. It however splits the framebuffer into
works with different framebuffer area to achieve load balancing. The averages of
the maximum deviations of computational time are 1.4, 0.9, 1.8, 2.9, and 2.1%
for Figures 4.3(a), (b), (c), (d), and (e), respectively.

The other test rendering pipeline uses a foveated sampling pattern [Guenter
et al. 12]. The sampling pattern we prepared in advance has higher sampling
density at the center of the screen, and density decreases as the distance of the
pixel from the center increases (Figure 4.4(a)). Sample density is less than one
per pixel for sparse area. Primary rays are generated according to the pattern,
and direct illumination is computed. We can see that the method keeps the
computation time on four GPUs almost the same (Figure 4.4).

4. Semi-static Load Balancing for Low Latency Ray Tracing on Heterogeneous Multiple GPUs 183

(1) (2) (3)

(a)

AMD FirePro W9000 GPU
AMD FirePro W9100 GPU

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

1 101 201 301

M
ax

 E
rr

or
 (%

)

Ti
m

e (
m

s)

Frames

GPU (W9000) GPU (W9100)
Error

0

0.1

0.2

0.3

0.4

0.5

0.6

1 101 201 301

Ra
tio

 #
 o

f A
ss

ig
ne

d
A

re
a

Frames

GPU (W9000)
GPU (W9100)

(b)

AMD FirePro W9000 GPU
AMD FirePro W9100 GPU

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

1 101 301

M
ax

 E
rr

or
 (%

)

Ti
m

e (
m

s)

Frames
201

GPU (W9000)
GPU (W9100)
Error

0

0.1

0.2

0.3

0.4

0.5

0.6

1 101 201 301

Ra
tio

 #
 o

f A
ss

ig
ne

d
A

re
a

Frames

GPU (W9000)
GPU (W9100)

(c)

Intel Core i7-2760QM CPU
AMD Radeon HD 6760m GPU

10
0

20
30
40
50
60
70
80
90
100

0

10

20

30

40

50

60

70

80

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

M
ax

 E
rr

or
 (%

)

Ti
m

e (
m

s)

Frames

GPU
CPU
Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

Series 1 Series 2

(d)

AMD FirePro W9000 × 4
0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

16

1 101 201 301

M
ax

 E
rr

or
 (%

)

Ti
m

e (
m

s)

Frames

GPU (W9000)
GPU (W9000)
GPU (W9000)

GPU (W9000)
Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 101 201 301

Ra
tio

 #
 o

f A
ss

ig
ne

d
A

re
a

Frames

GPU (W9000)
GPU (W9000)
GPU (W9000)
GPU (W9000)

(e)

AMD FirePro W9000 × 4
0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

40

45

50

1 101 201 301

M
ax

 E
rr

or
 (%

)

Ti
m

e (
m

s)

Frames

GPU (W9000)
GPU (W9000)
GPU (W9000)

GPU (W9000)
Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 101 201 301

Ra
te

 #
 o

f A
ss

ig
ne

d
A

re
a

Frames

GPU (W9000)

GPU (W9000)
GPU (W9000)

GPU (W9000)

Figure 4.3. (1) Test scene and compute devices used for testing. (2) Computation time over frames.
(3) Ratio of the number of processed pixels.

The method is also applicable to load balancing on multiple machines. In
the example shown in Figure 4.5, the framebuffer is split into three areas each of
which are processed by each machine, and each machine split the area further to
distribute the computation on installed GPUs.

4.5 Acknowledgement

We thank Syoyo Fujita for help in implementing the foveated rendering.

184 V 3D Engine Design

(a) Sample pattern.

(b) Image 1.

15
13

14
05

12
97

11
89

10
8197

3
86

5
75

7
64

9
54

1
43

3
32

5
21

7
10

91

00

2

4

6

8

10

12

14

16

18

20

10

20

30

40

M
ax

 E
rr

or
 (%

)

Ti
m

e (
m

s)

50

60

70

80

90

100

(c) Time and error of (b).

(d) Image 2.

16
53

15
35

14
17

12
99

11
81

10
6394

5
82

7
70

9
59

1
47

3
35

5
23

7
11

91

00

2

4

6

8

10

12

14

16

18

20

10

20

30

40

M
ax

 E
rr

or
 (%

)

Ti
m

e (
m

s)

50

60

70

80

90

100

(e) Time and error of (d).

Figure 4.4. Foveated rendering on four AMD FirePro W900 GPUs. Samples are only created at white
pixels in (a).

4. Semi-static Load Balancing for Low Latency Ray Tracing on Heterogeneous Multiple GPUs 185

Figure 4.5. Bedroom scene rendered using three machines connected via 10-Gb Eth-
ernet. The frame is split horizontally to distribute the work for machines. In each
machine, the frame is split vertically on GPUs. We used 4 × AMD Radeon HD 7970,
2 × AMD Radeon HD 6970, and 1 × AMD Radeon HD 6850.

Bibliography

[Advanced Micro Devices, Inc. 16] Advanced Micro Devices, Inc. “AMD
Radeon Dual Graphics.” http://www.amd.com/en-us/innovations/
software-technologies/dual-graphics, 2016.

[Cosenza et al. 08] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, Ugo
Erra, and Vittorio Scarano. “On Estimating the Effectiveness of Temporal
and Spatial Coherence in Parallel Ray Tracing.” In Eurographics Italian
Chapter Conference, pp. 97–104. Aire-la-Ville, Switzerland: Eurographics
Association, 2008.

[Guenter et al. 12] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and
John Snyder. “Foveated 3D Graphics.” ACM Trans. Graph. 31:6 (2012),
164:1–164:10.

[Heirich and Arvo 98] Alan Heirich and James Arvo. “A Competitive Analysis of
Load Balancing Strategiesfor Parallel Ray Tracing.” J. Supercomput. 12:1-2
(1998), 57–68.

[Mitchell 87] Don P. Mitchell. “Generating Antialiased Images at Low Sampling
Densities.” SIGGRAPH Comput. Graph. 21:4 (1987), 65–72.

[Moloney et al. 07] Brendan Moloney, Daniel Weiskopf, Torsten Möller, and
Magnus Strengert. “Scalable Sort-First Parallel Direct Volume Rendering

186 V 3D Engine Design

with Dynamic Load Balancing.” In Proceedings of the 7th Eurographics
Conference on Parallel Graphics and Visualization, pp. 45–52. Aire-la-Ville,
Switzerland: Eurographics Association, 2007.

