Volume 0 (1981), Number 0 pp. 1-4

COMPUTER GRAPHICS forum

Forward+: Bringing Deferred Lighting to the Next Level

Takahiro Harada, Jay McKee, and Jason C.Yang

Advanced Micro Devices, Inc.

Abstract

This paper presents Forward+, a method of rendering many lights by culling and storing only lights that contribute
to the pixel. Forward+ is an extension to traditional forward rendering. Light culling, implemented using the
compute capability of the GPU, is added to the pipeline to create lists of lights; that list is passed to the final
rendering shader, which can access all information about the lights. Although Forward+ increases workload
to the final shader, it theoretically requires less memory traffic compared to compute-based deferred lighting.
Furthermore, it removes the major drawback of deferred techniques, which is a restriction of materials and lighting
models. Experiments are performed to compare the performance of Forward+ and deferred lighting.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

In recent years, deferred rendering has gained in popular-
ity for rendering in real time, especially in games. The ma-
jor advantages of deferred techniques are the ability to use
many lights, decoupling of lighting from geometry complex-
ity, and manageable shader combinations. However, deferred
techniques have disadvantages such as limited material vari-
ety, higher memory and bandwidth requirements, handling
of transparent objects, and lack of hardware anti-aliasing
support [Kap10]. Material variety is critical to achieving re-
alistic shading results, which is not a problem for forward
rendering. However, forward rendering normally requires
setting a small fixed number of lights to limit the potential
explosion of shader permutations and needs CPU manage-
ment of the lights and objects. Also, with expensive dynamic
branching performance on current consoles (e.g., XBox 360)
it is understandable why deferred rendering has become ap-
pealing.

The latest GPUs have improved performance, more ALU
power and flexibility, and the ability to perform general com-
putation — in contrast to current consoles. Thus, rendering
with many lights with forward rendering could be a realis-
tic option, however the naive approach of iterating through
every light in a per-pixel shading fashion is impractical.

We present Forward+: a method of rendering with many
lights by culling and storing only lights that contribute to the

(© 2012 The Author(s)

Journal compilation (©) 2012 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Figure 1: A screenshot from the AMD Leo demo using For-
ward+.

pixel. The lights are evaluated one by one in the final shader.
In this manner, we retain all the positive aspects of forward
rendering and gain the ability to render with lots of lights.

This paper first presents the pipeline and gives a high level
explanation of the implementation. The theoretical memory
traffic of Forward+ is compared to deferred lighting.

T.Harada, J.McKee, J.C.Yang / Forward+

2. Related Work

Forward rendering has practical limitations on the number
of lights that can be used when shading [AMHHO0S8]. De-
ferred techniques overcome this issue and have been gaining
popularity, especially on consoles. Deferred renderers that
exports G-buffers storing all geometry information for the
screen-space lighting stresses the memory system. Deferred
lighting decouples lighting calculation and material evalua-
tion to reduce the memory traffic. Andersson [And11] im-
plemented a deferred-lighting system using the compute ca-
pability of the GPU. Theoretically, the method can achieve
the best performance among the existing deferred techniques
by its reduction of memory traffic.

Light-indexed deferred lighting takes a slightly different
approach by storing light indices instead of accumulating
lighting components [Tre09]. It reduces the cost of the G-
buffer export, but needs to read more data during the fi-
nal shading than a deferred-lighting technique. This method
has several restrictions: for example, the number of lights
per pixel has a predefined maximum capacity. The proposed
method, Forward+, shares this method’s concept without its
restriction and reduces further memory traffic by using the
flexible compute capability of modern GPUs.

3. Method

Forward+ extends a forward-rendering pipeline by adding
only a light-culling stage before final shading. The pipeline
consists of three stages: depth prepass, light culling, and fi-
nal shading. Another modification is for the data structure
of lights, which has to be stored in a linear buffer accessi-
ble from shaders for light culling and final shading. Depth
prepass is an option for forward rendering, but it is essen-
tial for Forward+ to reduce the pixel overdraws of the final
shading step, which is especially expensive for Forward+.
If depth prepass is compared to G-prepass used in deferred
techniques, in which full-screen geometry information is ex-
ported, the forward-render depth prepass is cheaper because
it populates only the depth buffer.

3.1. Light Culling

The light-culling stage is similar to the light-accumulation
step of deferred lighting. Instead of calculating lighting com-
ponents, light culling calculates a list of light indices over-
lapping a pixel. The list of lights can be calculated for each
pixel, which is a better choice for final shading, but there
are reasons it is not efficient if we look at the efficiency of
the entire rendering pipeline. The most important issues are
memory footprint and the efficiency of the computation at
the light-culling stage. Therefore, the screen is split into tiles
and light indices are calculated on a per-tile basis. Although
tiling can add false positives to the list for pixels in a tile, it
drastically reduces the memory footprint and computation.
The memory size for the light-index buffer and efficiency

of the final shader is a trade-off. By utilizing the compute
capability of the modern GPUs, light culling can be imple-
mented entirely on the GPU as detailed in Sec. 4. Thus, the
whole lighting pipeline is executed entirely on the GPU.

3.2. Shading

Whereas light culling creates the list of lights overlapping
each pixel, final shading goes through the list of lights and
evaluates materials using information stored for each light —
for example, light position and color which are not available
for final shading when a deferred technique is used. Now,
per-material instance information can be stored and accessed
in linear structured buffers passed to the final shaders. There-
fore, all constraints on pixel quality have been removed
because light accumulation and shading happen simultane-
ously in one place with complete material and lighting in-
formation. Usage of complex materials and more accurate
lighting models to improve visual quality is not constrained
other than by the GPU computational cost which is largely
determined by the number of overlapping lights hitting a sin-
gle pixel x material cost X lighting model cost. With this
method, high pixel overdraw can kill performance; there-
fore, the depth prepass is critical to minimize the cost of final
shading.

4. Light Culling Implementation

The proposed rendering pipeline can reuse most of the code
from an existing forward-rendering pipeline because it is pri-
marily an extension of it. Compute-based light culling is the
big addition to the technique. Thanks to the flexibility of
current GPUs and graphics APIs, light culling can be im-
plemented in several ways, each of which has pros and cons.
This section describes two implementations that run entirely
on the GPU. These approaches build lists of lights per tile.
Although they could also build light lists per pixel by run-
ning additional kernel, this increases the computation time
and the memory footprint.

4.1. Gather Approach

This method builds the list of lights in a single compute
shader similar to [And11]. It executes a thread group per
tile. A frustum of the tile is calculated using the range of the
screen space of the tile and maximum and minimum depth
values of the pixels. The kernel first uses all the threads in
a thread group to read a light to the local register. Then the
overlap of the lights to the frustum of the tile is checked
in parallel. If the light overlaps, the thread accumulates the
light to thread local storage (TLS) using local atomic op-
erations. After all the lights overlapping a tile are collected
in TLS, it flushes the lights to the global memory using all
threads. This method is simple and effective if the number
of lights is not too large. When there is a massive number of
lights, one might consider using the scatter approach.

(© 2012 The Author(s)
Journal compilation (©) 2012 The Eurographics Association and Blackwell Publishing Ltd.

T.Harada, J.McKee, J.C.Yang / Forward+

(a)

Figure 2: A scene with dynamic 3,072 lights rendered in 1280x720 resolution. (a) Using diffuse lighting. (b) Visualization of
number of lights overlapping each tile. Blue, green and red tiles have 0, 25, and 50 lights, respectively. The numbers in between
are shown as interpolated colors. The maximum number is clamped to 50.

4.2. Scatter Approach

This method creates lists in several steps. It first computes
which tile a light overlaps and writes the light- and tile-index
data to a buffer. This is done by executing a thread per light.
The data of the buffer (ordered by light index at this point)
needs to be sorted by tile index because we want a list of light
indices per tile. We use a radix sort and then run kernels to
find the start and end offsets of each tile in the buffer.

5. Results and Discussion

Forward+ was implemented using DirectX11(©). Fig. 1 (a)
is a screen shot of the AMD Leo demo using Forward+.
Because the method allows the use of any surface shader,
there is no limit to the lighting and surface materials. One
example of materials used in the demo is the metal shader
in which physically accurate effects are evaluated for all the
lights contributing to the pixel.

However, nothing comes for free. What is the cost we are
willing to pay for better pixel quality? In order to perform a
detailed analysis of Forward+, for comparison, we imple-
mented a compute-based deferred-lighting pipeline which
does not write G-buffers [And11]. This implementation has
a benefit that it saves memory bandwidth by reading and
writing frame-buffer information once using the compute
shader. Thus, it is theoretically the best in terms of mem-
ory bandwidth, which is a drawback of the standard deferred
techniques. We compared the theoretical memory traffic of
Forward+ and deferred for three steps of the pipeline. For
light culling implementation, the gather approach is cho-
sen because of the similarity of light culling to the de-
ferred light accumulation. Table 1 compares the theoreti-
cal memory traffic of those methods. Deferred compacts
all data to be written into a single float4 render target at
G-prepass (normal.xyz, depth). Forward+ does not write a
full-screen light accumulation buffer; instead, it writes only

(© 2012 The Author(s)
Journal compilation (©) 2012 The Eurographics Association and Blackwell Publishing Ltd.

Deferred(H) : ; ‘
Deferred(L) | Prepass
Forward+(H) m— ‘ Light processing
Forward-+(L) | — | I Final shading

0 5 15 20

Tim(lans)

Figure 3: Breakdown of the computation time for three
stages on an AMD Radeon HD 6970 GPU. Deferred(L) and
Forward+(L) are the times with lower GPU memory fre-
quency.

light indices overlapping each tile at light processing. In
most cases, the data size of light indices is far less than
full-size frame buffers. However, addition of light-culling
stage increases memory reads at final shading: Forward+
has to read all the overlapping light indices and light infor-
mation while the deferred technique reads only float4 from
the light-accumulation buffer. If we subtract the total mem-
ory traffic of Forward+ from the total of deferred, we find
Totalgiff = N x F x (15 —M x (1/T + 1+ L)) (see the
caption of Table 1 for definitions of N,F,M,T,L). Solving
Totalgisy > 0 for M gives M < 15 x (1+ (1 +L) xT)/T.
Thus, if lights are point lights (L = 8, position, radius and
color) and the average number of lights per tile M is less than
15x (1+(1+L)xT)/T > 15 x 9, Forward+ requires less
memory traffic compared to the deferred (Totaly;ry > 0).
Our comparison of Forward+ to compute-based deferred
lighting technique that requires the least memory among de-
ferred variants indicates that — in theory — no deferred vari-
ants can beat Forward+ in terms of memory traffic.

To confirm the analysis, we built a demo scene with 3,072
lights scattered in space as shown in Fig. 2(a) and compared
the performance of these two methods. We used 8 x 8 for the
tile size. Fig. 2(b) is a visualization of the number of lights
per tile. The reason the tiles overlapping the edges of the

T.Harada, J.McKee, J.C.Yang / Forward+

Table 1: Memory traffic comparison for three steps. (A), (B), (C) for Forward+ are depth prepass, light culling, and final

shading; for Deferred, G-prepass, light accumulation, and final shading. This table does not include common memory traffic

such as depth buffer write at (A) and light read at (B). N,F,M,T,L are number of screen pixels, size of float, average number

of lights overlapping a tile, tile size, and data size of a light, respectively. Forward+ reads depth at (B), writes light indices per

tile at (B), and reads light indices and light at (C). Deferred writes normal vector at (A), reads depth and normal at (B), writes

light accumulation at (B) and reads light accumulation at (C). Total is the summation of (A), (B), and (C).

(A) Prepass (B) Light processing (C) Final shading Total
Forward+ Read 0 NXF MXNXFx(L+1) NXF+MxNXFx(1/T+1+L)
Write 0 MXN/T xF 0
Deferred Read 0 NXxF x4 NXxF x4 NXxF x16
Write NxF x4 NxF x4 0
Deferred | ! ! } :Eghﬁ;itﬂ SIMDs compared to discrete GPUs. Some mobile or inte-
Forward+ L# 1 Final shadin grated GPUs employ tile-based rendering. Forward+ with
0 20 40 80 100 120

TimSQms)

Figure 4: Computation time on AMD A8-3510MX.

models have more lights is the frustum tends to be long in
the depth direction; thus, it reports lights overlapping to the
entire frustum. To improve this issue, empty space in each
frustum has to be detected. However, there can be any num-
ber of depth layers in a tile. A complicated empty-space de-
tection does not pay off. Using a spatial subdivision instead
of the two-dimensional subdivision might solve the issue but
it requires more memory and ALU operations.

In Fig. 3, Forward+(H) and Deferred(H) are rendering
times using an AMD Radeon ™HD 6970. We measured
the computation time for prepass, light processing, and fi-
nal shading of Table. 1 on the CPU, which includes kernel
dispatch cost and GPU pipeline flush overhead. The mea-
sured timing is not pure GPU processing time, but the com-
parison is fair because the conditions are the same for both
tests. The results confirm the analysis of theoretical memory
bandwidth consumption: Forward+ is better for prepass and
light processing, while deferred is better on the final shad-
ing. In total, Forward+ was faster. We also tested by slow-
ing the memory clock of the GPU to emulate a GPU with
lower memory bandwidth. As shown in the comparison of
Forward+(L) and Deferred(L) in Fig. 3, the gap between
Forward+ and the deferred widened because the deferred
lighting requires more memory access. In the future, GPUs
might increase the ALU/memory bandwidth ratio because
adding more ALU units is easier than improving memory
bandwidth. This experiment shows that Forward+ is promis-
ing on a GPU with that specification. We performed another
test on an AMD A8-3510MX, which has an integrated AMD
Radeon HD 6620G GPU. The results shown in Fig. 4, con-
firm the theoretical analysis of Forward+ on an integrated
GPU, which has more limited memory bandwidth and fewer

the tiled light culling is well adapted to this rendering ar-
chitecture because it can reduce the cost of reading a light
list at final shading.

In this paper, we did not investigate how tile size affects
performance, which depends on the tile size as well as many
other factors such as the geometric complexity of the scene,
number of lights, and influence maximum distance of lights.
Automatic finding of the best tile size for a scene might be
an interesting topic to explore in the future.

6. Conclusion

We presented Forward+, a rendering method that adds a
GPU compute-based light-culling stage to the traditional
forward-rendering pipeline to handle many lights. It unlocks
us from the restrictions of deferred techniques and enables
us to achieve better pixel quality by coupling the advantages
of forward and deferred techniques. Forward+ theoretically
requires less memory traffic than compute-based deferred
lighting. We performed experiments that show Forward+
outperforms the least memory-intensive deferred-lighting
technique.

As future work, many avenues can be explored because
of the freedom at the final shading. An example is shadow
computation from all the lights in the scene by local short
ray casting to the lights.

References

[AMHHO8] AKENINE-MOLLER T., HAINES E., HOFFMAN N.:
Real-Time Rendering, 3 ed. AK Peters, July 2008. 2

[And11] ANDERSSON J.: DirectX 11 Rendering in Battlefield 3.
Game Developers Conference (2011). 2,3

[Kap10] KAPLANYAN A.: CryENGINE 3: Reaching the speed of
light. ACM SIGGRAPH 2010 Courses (2010). 1

[Tre09] TREBILCO D.: Light indexed deferred rendering. In
ShaderX7 (2009), Charles River Media. 2

(© 2012 The Author(s)
Journal compilation (©) 2012 The Eurographics Association and Blackwell Publishing Ltd.

